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Abstract
BACKGROUND: Progression in Alzheimer’s disease manifests 
as changes in multiple biomarker, cognitive, and functional 
endpoints. Disease progression modeling can be used to 
integrate these multiple measures into a synthesized metric of 
where a patient lies within the disease spectrum, allowing for a 
more dynamic measure over the range of the disease.
OBJECTIVES: This study aimed to combine modeling 
techniques from psychometric research (e.g., item response 
theory) and pharmacometrics (e.g., hierarchical models) to 
describe the multivariate longitudinal disease progression 
for patients with mild-to-moderate Alzheimer ’s disease. 
Additionally, we aimed to extend the subsequent model to 
make it suitable for clinical trial simulation, with the inclusion 
of covariates, to explain variability in latent progression (i.e., 
disease progression) and to aid in the assessment of enrichment 
strategies. 
DESIGN: Multiple longitudinal endpoints in the Alzheimer’s 
Disease Neuroimaging Initiative database were modeled. This 
model was validated internally using visual predictive checks, 
and externally by comparing data from the placebo arms of two 
Phase 2 crenezumab studies, ABBY (NCT01343966) and BLAZE 
(NCT01397578). 
SETTING: The Alzheimer’s Disease Neuroimaging Initiative 
began in 2004: the initial 5-year study (ADNI-1) was extended 
by 2 years in 2009 by a Grand Opportunities grant (ADNI-GO), 
and in 2011 and 2016 by further competitive renewals of the 
ADNI-1 grant (ADNI-2 and ADNI-3, respectively). This work 
studies natural progression data from patients with confirmed 
Alzheimer’s disease. The Phase 2 ABBY and BLAZE trials 
evaluated the safety and efficacy of crenezumab in patients with 
mild-to-moderate Alzheimer’s disease.
PARTICIPANTS: From the Alzheimer’s Disease Neuroimaging 
Initiative database, 305 subjects who had a baseline diagnosis 
of mild-to-moderate Alzheimer’s disease were included in 
modeling. From the ABBY and BLAZE studies, 158 patients 
were included from the studies’ placebo arms.
MEASUREMENTS: Longitudinal cognitive and functional 
assessments modeled included the Clinical Dementia 
Rating (both as Sum of Boxes and individual item scores), 
the Mini-Mental State Examination, the Alzheimer’s Disease 
Assessment Scale – Cognitive Subscale, the Functional Activities 
Questionnaire, the Montreal Cognitive Assessment, and the Rey 
Auditory Verbal Learning Test. Also included were the imaging 

variable fluorodeoxyglucose-positron emission tomography 
and the following magnetic resonance imaging volumetrics: 
entorhinal, fusiform, hippocampal, intra-cranial, mid-temporal, 
ventricular, and whole brain.
RESULTS: Applying item response theory approaches in this 
longitudinal setting showed clinical assessments informing 
a common disease scale in the following order (from early 
disease to late disease): Rey Auditory Verbal Learning Test, 
Functional Activities Questionnaire, Montreal Cognitive 
Assessment, Alzheimer’s Disease Assessment Scale – Cognitive 
Subscale 12, Clinical Dementia Rating – Sum of Boxes, and 
Mini-Mental State Examination. The Clinical Dementia 
Rating communication and home-and-hobbies items were 
most informative at earlier disease stages, while memory, 
orientation, and personal care informed the disease status at 
later stages. A clinical trial simulation model was developed and 
accurately described within-sample longitudinal distribution 
of endpoints. Simplifying the model to use only baseline 
age, MMSE, and APOEε4 status as predictors, out-of-sample 
mean progression of ADAS-Cog and CDR Sum of Boxes in 
the ABBY and BLAZE placebo arms was accurately described; 
however, the variability in these endpoints was underpredicted 
and suggests possibility for further model refinement when 
extrapolating from the ADNI sample to trial data. Clinical trial 
simulations were performed to exemplify use of the model to 
investigate hypothetical disease modification effects on the 
multivariate, longitudinal progression on the Alzheimer ’s 
Disease Assessment Scale – Cognitive Subscale and the Clinical 
Dementia Rating – Sum of Boxes. 
CONCLUSIONS: The latent variable structure of item response 
theory can be extended to capture a variety of scales that are 
common assessments and indicators of disease status in mild-to-
moderate Alzheimer’s disease. These models are not intended to 
support causal inferences, but they do successfully characterize 
the observed correlation between endpoints over time and 
result in concise numerical indices of disease status that reflect 
the totality of evidence from considering the endpoints jointly. 
As such, the models have utility for a variety of tasks in clinical 
trial design, including simulation of hypothetical drug effects, 
interpolation of missing data, and assessment of in-sample 
information.  

Key words: Disease progression, item response theory, clinical trial 
simulation, prevention trials, Alzheimer’s disease.
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Introduction

Changes in several endpoints (including 
cognitive, functional, and biomarker endpoints) 
are thought to be informative of disease 

progression in Alzheimer’s disease (AD), but none in 
isolation are considered sufficient to define disease 
progression. Joint analysis of multiple endpoints 
may be more informative with regard to detecting 
and understanding disease progression. Given that 
the assessment of clinical trials in AD relies upon the 
accurate interpretation of multiple endpoints, as well 
as how they vary across the population of interest, the 
ability to understand, quantify, and simulate metrics 
of underlying disease status outcomes should enhance 
our ability to identify potentially successful therapies 
(i.e., identification of both disease progression and 
modification, which present across multiple endpoints) 
(1, 2).   

There is a rich history of longitudinal modeling of 
univariate cognitive endpoints in AD. In the mild-to-
moderate AD population, the Alzheimer ’s Disease 
Assessment Scale – Cognitive Subscale (ADAS-Cog) has 
historically served as the standard for assessment of 
cognition and has been described by multiple models that 
described versions of the summed score (ADAS-Cog 11) 
(3-5). The current trend toward the study of less-advanced 
disease populations has brought new focus on scales used 
for functional assessment and that are more sensitive 
in earlier disease states, such as the Clinical Dementia 
Rating (CDR) scale, which is typically analyzed as the 
“Sum of Boxes” (CDR-SB) (6-8), the Alzheimer’s Disease 
Cooperative Study – Activities of Daily Living (ADCS-
ADL), and the Functional Activities Questionnaire (FAQ) 
(9). Modeling the joint progression of these endpoints 
is a natural extension to these univariate approaches 
and is becoming an increasingly attractive method for 
understanding the long-term correlation between such 
endpoints, as target populations for potential treatments 
increasingly focus on individuals at earlier disease stages 
(10). 

A psychometric item response theory (IRT) approach 
was applied in a novel longitudinal manner to determine 
sensitivity of the individual items within the ADAS-Cog 
score (11). IRT itself has been applied in non-longitudinal 
formats to CDR items to establish the ability of the 
different items to distinguish between patients at different 
disease stages, and also to demonstrate the similarity 
between this scale and another functional score (ADCS-
ADL) (12).

The longitudinal IRT approach uses a latent 
structure to account for the dependence across items 
within a cognitive scale within a subject (11-13). A 
natural extension of this toward quantifying “disease 
progression” would be inclusion of multiple endpoints 
from different scales with different domains of data (e.g., 
a mixture of ordinal and continuous scales). A particular 

advantage to such a modeling approach is that the need 
for a rigorously structured dataset with simultaneous 
observation for multiple endpoints (as typically 
required in most multivariate regression scenarios) 
is not necessary (14). To accommodate this variety of 
data, Vandemeulebroecke and colleagues (15) as well 
as Leoutsakos and colleagues (16) applied the graded 
response model (a common IRT model) to a mixture of 
(naturally) ordinal data and ordinal transformations of 
continuous metrics of interest. Similar latent variable 
approaches have appeared in statistical literature in 
which discrete time latent variable models first described 
unbounded multivariate longitudinal data (17), and 
are now more frequently implanted in as joint models 
of longitudinal and time-to-event data (e.g., Tsiatis 
and Davidian (18)). A general longitudinal model for 
multivariate data of mixed types was introduced and 
compared to standard (fixed-time) IRT approaches (19). 

We aimed to build upon previous work in longitudinal 
IRT approaches by preserving the original scales of the 
data, as would be desirable in the construction of clinical 
trial simulation (CTS) models. The objective was to 
develop a methodology that easily extended to new scales 
at earlier (or later) disease stages as understanding of the 
disease evolves over time, to support CTS across drug 
development programs. In developing this methodology, 
our goal was not primarily to judge the sensitivity of 
particular metrics of dementia (which is typically the 
goal of IRT), but to synthesize the information from the 
multiple metrics into a single latent measure of disease 
status while preserving the multivariate longitudinal 
correlation between the various metrics of the disease 
status. To this end, models were developed that included 
both endpoints commonly used to assess disease 
progression and drug effect in the clinical trial setting 
(e.g., CDR-SB, ADAS-Cog), but also progression markers 
thought to be more closely aligned with the disease 
mechanisms (e.g., fluorodeoxyglucose-positron emission 
tomography (FDG-PET) and magnetic resonance imaging 
(MRI)). Additionally, with the refined goal of building a 
model suitable for CTS in mind, a secondary modeling 
objective was to include covariates to explain variability 
in latent progression (i.e., disease progression) and to aid 
in assessment of enrichment strategies (3-5). 

Methods

Data

Data used for the characterization of natural disease 
progression were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.
edu). ADNI is a longitudinal multicenter study designed 
to develop clinical, imaging, genetic, and biochemical 
biomarkers for the early detection and tracking of AD.

The ADNIMERGE R package (20) (Initiative 2014, 
packaged on January 20, 2014) was used to import data 
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into R (21) for both the initial 5-year study (ADNI-1) 
and a grant extension study (ADNI-2). The ADAS-Cog 
12 score was derived by adding the delayed memory 
recall score (Q4) at each recording of the ADAS-Cog 11. 
Endpoints of interest selected for modeling were those 
used to assess efficacy in clinical trials in patients with 
prodromal and mild-to-moderate AD (mild cognitive 
impairment due to AD), as well as other measures of 
progression such as ADAS-Cog, CDR-SB, FAQ, the 
Mini-Mental State Examination (MMSE), the Montreal 
Cognitive Assessment (MoCA), and Rey Auditory 
Verbal Learning Test (RAVLT; immediate). In addition, 
longitudinal biomarkers of AD were included such as 
FDG-PET and volumetric MRI (MRI; entorhinal, fusiform, 
hippocampus, intracranial volume, mid-temporal, 
ventricular, and whole brain). 

Data from the placebo arms of two Phase 2 
crenezumab studies (ABBY [NCT01343966] and BLAZE 
[NCT01397578]) were used for external validation of 
the model. The only requirement to subject inclusion for 
either dataset was presence of at least one longitudinal 
(non-baseline) observation in any of the endpoints jointly 
modeled and, in the case of covariate inclusion, presence 
of the baseline covariate information. No explicit data 
imputation was performed.

Data assembly and post hoc analyses were performed 
using R 3.2.3 and model estimation was performed 
using OpenBUGS version 3.2.3 on an Ubuntu 12.04 LTS 
operating system. Details on computation can be found in 
the Appendix. 

Model

The disease status was described using a latent process, 
following the conceptual approach used in IRT. As 
opposed to the typical longitudinal approach of modeling 
cognitive and functional endpoints as a function of 
time, the endpoints of interest were instead modeled as 
functions of the time-dependent latent disease status, 
which in turn can vary as a function of patient covariates, 
including treatment (Figure 1).

Patient latent disease progression was assumed to 
progress as a linear function of time since enrollment, 
with patient-specific intercepts to accommodate subjects 
entering a study at varying levels of the disease state (η_i; 
at study baseline) and slope (λ_i; see Ueckert et al. (11) 
and Polhamus et al. (22) for similar approaches). Let θi(t) 
represent the latent disease status for patient i at time t, 
then the progression over time is modeled as:

θi (t)= ηi+ λit

As one of the aims of this modeling exercise is to 
simulate new trials with subjects who have a subset of the 
source data population characteristics, we model ηi and 
λi as a linear combination of covariates (xi) and “fixed” 
effects (β). 

Notably, the latent disease status for a reference patient 
(i.e., a hypothetical “typical” patient with reference 
covariate values) at baseline is defined to be standard 
normal for identifiability purposes. Having defined the 
latent progression over time, we then define submodels 
that describe the effect of the latent disease status on the 

Figure 1. Joint progression model

The general model architecture describes disease state as changing linearly over item, with intercepts and slopes adjusted by patient characteristics at study baseline. 
The linear progressions over time are then related to multiple endpoints that present as non-linear functions of the disease state and time. Disease-modifying therapy in 
this case is identified as a treatment that reduces the slope of the disease state progression over time. The bottom three panels illustrate the relationship between time, 
underlying disease status, and endpoint score for three patients at different disease states at baseline (time 0); Aβ, beta-amyloid; AD, Alzheimer’s disease; ADAS-Cog, 
Alzheimer’s Disease Assessment Scale – Cognitive Subscale; APOEε4, apolipoprotein Eε4 allele; CDR, Clinical Dementia Rating; CSF, cerebrospinal fluid; FAQ, Functional 
Activities Questionnaire; FDG-PET, fluorodeoxyglucose-positron emission tomography; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; 
MRI, magnetic resonance imaging; PET, positron emission tomography; RAVLT, Rey Auditory Verbal Learning Test.
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endpoints rather than on time, as done in more common 
longitudinal models. The Appendix describes the 
methodology used for the standard IRT graded-response 
model (i.e., ordered logit for ordinal endpoints, e.g., CDR 
items), a normal submodel (continuous on the real line), 
and a beta-residual submodel (for bounded responses, 
e.g., ADAS-Cog, MRI metrics, or CDR-SB).

Prior specification

A Bayesian probabilistic framework was established 
for estimation. The decision to use Bayesian methods 
was primarily motivated by a desire for the flexibility 
of estimation afforded by sampling methods, and 
only secondarily to allow the utilization of prior 
knowledge where applicable. Accordingly, the strategy 
for specification of priors can generally be classified as 
constraining the parameters to a subset that conveys 
plausible and meaningful clinical outcomes, yet remains 
otherwise non-informative (i.e., weakly informative). 
A notable exception here lies in the specification of the 
prior for β((λ) ), the mean rate of progression on the latent 
scale, which was restricted to be positive for identifiability 
purposes. A list of the priors is available in the Appendix 
(Table A1). 

Model building and validation 

Two distinct modeling paths were pursued. The first 
pathway served to exemplify the ability of the model 
to capture the multivariate progression (the “joint 
progression model”) of many endpoints measured at 
varying times and frequencies. As such, no covariate 
modeling was performed for this path; rather, the 
emphasis was on including all relevant longitudinal 
proxies of disease status with the largest patient subset 
as possible. In this path, all items were considered at the 
aggregate total level regardless of whether individual 
item scores were available (e.g., CDR-SB vs individual 
CDR items). Structural fit was assessed by comparing 
observed to predicted values conditional on the estimated 
random effects, including assessment of the preservation 
of correlation across endpoints by comparing the 
observed pairwise correlations (Spearman’s rho) within 
individuals to those simulated from the model.

The second path (the “simulation model”) aimed 
to assess the viability of the model for simulation 
purposes, by including common covariates used in 
clinical trial enrollment and stratification. Longitudinal 
endpoints included in this model reflected the available 
endpoints in the external validation dataset and 
are aligned with those metrics most commonly used 
as trial endpoints in mild cognitive impairment. The 
covariates selected reflect the availability in the external 
dataset, representing the well-known set of factors that 
characterize the rate of progression. These covariates 
included apolipoprotein E ε4 allele (APOEε4) carrier 

status, baseline MMSE (BMMSE), age, gender, years of 
education, baseline amyloid-PET (AV45), baseline FDG-
PET, and baseline cerebrospinal fluid tau/beta-amyloid 
(Aβ)-42 ratios. Longitudinal endpoints included ADAS-
Cog 12, the six individual CDR items, ventricular volume, 
and hippocampal volume. As individual CDR items 
are representative of different aspects of function and 
cognition, it was suggested that solitary items such as the 
memory subscore, in summation (CDR-SB) or in novel 
combinations, made for viable endpoints in a trial setting. 
The items were subsequently modeled individually using 
the graded-response submodel. 

Model diagnostics were typical of mixed-effects 
regression models with emphasis on residuals (per 
endpoint) and random effects against observed values, 
time, and covariates of interest. Covariates were added 
to the model based upon visual inspection of trends in 
the residuals and random effects when compared to the 
covariates. Model comparison was driven by the deviance 
information criterion and inclusion of covariates thought 
to be relevant to trial conduct and simulation.

Model validation consisted of both internal and 
external simulation-based validation steps. For both 
validations, longitudinal statistics of interest were 
compared between the observed data and simulations 
from the model; coverage of the observed values by 
the 90% credible intervals (CrIs) of the simulations 
indicated model suitability. More detail can be found in 
the Appendix.

Information content

Information (statistical) was used to quantify the 
contribution of an endpoint to the latent scale, or regions 
of the latent scale. We used expected Fisher information 
for graded-response items as it is both analytically 
tractable and well known (23), but we used observed 
information for parameterizations lacking a simple 
analytical solution (i.e., the beta regression models). More 
details on each can be found in the Appendix.

Hypothetical drug effect 

To assess the impact of a hypothetical disease-
modifying drug, proportional reductions on the latent 
rate of progression were considered. In other words, θ_i 
(t,Δ)= ηi+ λi*(1-Δ)*t. Effects of size Δ= 0.2, 0.4, and 0.6 
(i.e., a 20%, 40%, and 60% disease-modifying reduction) 
were considered. To assess the effect in a real-world trial 
setting, the patients from the external validation set were 
used in 1000 simulated trials (i.e., covariates, dropout 
patterns, and follow-up duration from the external 
validation dataset were used as the virtual population). 
For each of the 1000 simulated trials, the mean change 
from baseline and mean percentage change from baseline 
were calculated and then summarized as medians and the 
90% CrI at each nominal observation window.
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Results

ADNI data for model building

The ADNI database was subset of 305 subjects who had 
a baseline diagnosis of mild-to-moderate AD. ADAS-Cog 
mean at baseline was 28.0; most subjects (78%) had a CDR 
memory score of 1; 70% had at least one APOEε4 positive 
allele; other demographic summaries are shown in the 
Appendix (Table A2).

Joint progression model (Model 1)
Joint progression modeling was performed across 14 

measures of mild-to-moderate AD, making no adjustment 
for covariates (as such, covariate effects, if present, are 
accounted for by the inter-individual random effects ηi, λi, 
and γ(1,i)((l))). Models with a mix of the beta-residual and 
normal residual submodels, and models with only beta-
residual submodels were found to both provide similar 
fits. Model results using the beta-residual submodels 
are presented herein for a more direct comparison of 
the information functions (i.e., differences between the 
information curves are not due to model specification). 

Posterior parameter estimates (Appendix, Table A3) of 

Figure 2. The relationship between latent disease status and the endpoints used in the joint progression model

The ADNI joint progression model was fit to the set of endpoints shown below. The fitted value of the latent disease score was calculated at the posterior median for each 
observation and shown here. red lines are a loess smooth through the data; ADAS-Cog, Alzheimer’s disease assessment scale-cognitive subscale; ADNI, Alzheimer’s Di-
sease Neuroimaging Initiative; CDR, Clinical Dementia Rating; FAQ, Functional Activities Questionnaire; FDG-PET, fluorodeoxyglucose-positron emission tomography; 
ICV, intracranial volume; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; RAVLT, Rey Auditory Verbal Learning Test.
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the endpoint-latent slopes (γ2) for the joint-progression 
model fit increasingly positive values of the latent score 
to greater disease progression (Figure 2). Several of the 
cognitive and functional assessments show a strong 
correlation with the latent disease score, whereas the 
volumetric MRI results show more variability around — 
and less information on — latent disease (θ). This result is 
as expected, since cognitive and functional assessments, 
unlike volumetric MRI, have been developed specifically 
for the purpose of identifying disease in this population. 
A comparison of the observed and predicted data 
across all timepoints showed that the model captured 
the central tendency of the data well, and, as would 
therefore be expected, the multivariate correlation across 
endpoints was preserved. The normalized observed item 
information from each of the clinical assessments and 
cognitive tests are shown in Figure 3a. RAVLT, FAQ, and 
MoCA give higher amounts of information at earlier 
stages of disease as compared to ADAS-Cog, CDR, and 
MMSE.

Simulation model (Model 2)

For the second modeling objective, established markers 
and correlates of disease progression were considered 
on each of the η and λ structural parameters, including: 
APOEε4 carrier status, BMMSE, age, gender, years of 
education, baseline amyloid-PET (AV45), baseline FDG-
PET, baseline cerebrospinal fluid tau/Aβ-42 ratios, 
and the two-way interactions between each of these 
covariates. FDG-PET in particular showed a high level of 

correlation with the latent slope parameter; however, due 
to the amount of missing data in the external validation 
dataset, only age, BMMSE, and APOEε4 status were 
retained in the final simulation model. All three of these 
factors affected disease progression, in that older APOEε4 
positive females with a higher BMMSE progressed at a 
slower rate (see Appendix, Figure A1). However, due to 
their non-linear nature, the effect seen on these endpoints 
varied according to the disease state. For example, 
the effect of a one-unit difference in BMMSE is seen 
to have a larger difference for healthier (e.g., BMMSE 
≥ 26) participants than those with a more advanced 
disease state (e.g., BMMSE ≤ 18) (Appendix, Figure 
A2). Volumetrics (hippocampal volume and ventricular 
volume) were included in the modeling of the ADNI data; 
however, they were found to be measured on a different 
scale in the external validation set and are therefore 
excluded from further discussion herein.

CDR was modeled with the graded-response model 
and the item characteristic curves and the expected 
Fisher information for each of the six items are shown in 
Figure 3b and c. As expected, the item characteristic curve 
plot shows that, with the ADNI mild-to-moderate AD 
subset, there are no patients with a memory score of 0 (the 
probability of getting that score is 0); as patients progress 
over the duration observed in this ADNI subset, 75% of 
the patients progress to a memory score of 3. Likewise, 
the judgment item has a low probability of patients 
having a score of 0. Most patients in the studied range 
of disease receive either a 0 or 1 score on the personal 
care item scale (i.e., this is not a sensitive measure within 

Figure 3. IRT techniques were applied to examine the observed information (normalized) from the six clinical 
assessments included in the joint progression model (a) as well as the ICC (b) and FI (c) from the six CDR items as 
modeled in the simulation model. Disease progression increases with θ

ADAS-Cog 12, Alzheimer’s Disease Assessment Scale – Cognitive Subscale 12; CDR, Clinical Dementia Rating; FAQ, Functional Activities Questionnaire; FI, Fisher 
information; ICC, item characteristic curve; IRT, item response theory; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; RAVLT, Rey 
Auditory Verbal Learning Test.
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Figure 4. Internal and external model validation for the simulation model. Internal visual predictive in which the 
median and 90% CrI around selected percentiles (the 5th, 50th, and 95th percentiles, circles and triangles for median 
and 5th, 95th respectively) for change from baseline (a) and percentage change from baseline (b) is compared with the 
observed quantities. Similarly, panel (c) shows an external validation using placebo arms from two Phase 2 trials

ADAS-Cog 12, Alzheimer’s Disease Assessment Scale – Cognitive Subscale 12; CDR, Clinical dementia Rating; CrI, credible interval.
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Figure 5. Change from baseline (absolute score) and change from baseline (%) in the presence of a disease-modifying 
drug effect. Drug effect as proportional reductions from 0.2 (or 20%) to 0.6 (60%) on the disease score slope, λ_i. The 
simulations were performed using the external validation set, i.e., patients from actual Phase 2 trials. The 5th, 50th, and 
95th percentiles of the mean change are shown as the lines and shaded regions

ADAS-Cog 12, Alzheimer’s Disease Assessment Scale – Cognitive Subscale 12; CDR, Clinical Dementia Rating. 



220

MODELING ALZHEIMER’S DISEASE PROGRESSION

this population), while the other items (community, 
home and hobbies, judgment, and orientation) show 
more sensitivity. The information curves corroborate 
these observations with communication and home-and-
hobbies items both showing sensitivity across the studied 
range of conditions, but decreasing in disease severity. 
The judgment, memory, and orientation items all show 
lower information across the central area of the latent 
score distribution in this sample. Personal care has little 
information on θ until the latest stages studied.

Model validation

Model validation was performed using the simulation 
model (Model 2). For the purpose of internal validation, 
visual predictive checks (VPCs) were created for absolute 
values, change from baseline, and percentage change 
from baseline values. Additionally, VPCs by covariate 
strata were generated. All VPCs suggest that the model 
was able to replicate the data and is fit for purpose for 
simulation (Figure 4). For external validation, 158 patients 
with mild-to-moderate AD were used from the Phase 2 
studies (Appendix, Table A4). Compared with the ADNI 
patient population, the Phase 2 patient population was 
numerically younger than the ADNI population (mean 
and range of 70.1 [51-80] for crenezumab vs 74.9 [55.1-
90.9] for ADNI) and was more evenly balanced across 
gender (53.8% female for crenezumab vs 44.6% female 
for ADNI), but were otherwise similar. Results of the 
external validation are shown in Figure 4. The simulated 
endpoints were assessed for the mean of the change from 
baseline scores as well as the percentage change from 
baseline scores. CDR was summarized as CDR-SB rather 
than the individual item scores, to more closely resemble 
a trial efficacy endpoint. Regarding the central tendency, 
the model predicted more progression in CDR-SB at week 
20 than what was observed, and likewise under-predicted 
the week 64 ADAS-Cog change from baseline (although 
not the percentage change from baseline).

Hypothetical drug effect

Results from the simulation of a disease-modifying 
drug’s effect are shown in Figure 5. A 20% reduction 
showed overlapping 90% CrIs with placebo for both 
ADAS-Cog and CDR-SB. At week 73, the placebo 
progression for ADAS-Cog percentage change from 
baseline was 29.1% (90% CrI 24.6%, 34.4%) as compared 
to a 23.8% (90% CrI 19.3%, 28.5%) change under the 
hypothetical 20% reduction. These correspond to change 
from baseline scores of 7.0 (90% CrI 6.0, 8.1) points for no 
disease modification and 5.6 (90% CrI 4.6, 6.6) points for a 
20% reduction. For CDR-SB, the change from baseline for 
placebo patients was simulated as 2.4 (90% CrI 2.1, 2.8) or 
60.8% (90% CrI 52.1%, 70.2%) as compared to a 1.9 (90% 
CrI 1.6, 2.2) or 48.0% (90% CrI 40.4%, 55.3%) change with 
a disease-modifying effect of 20%. At a 40% reduction 

of disease progression, the endpoints were significantly 
different based upon the 90% CrIs.

Discussion

Extending the longitudinal latent variable model 
framework used in IRT can successfully capture both 
within-sample and out-of-sample progression of multiple 
endpoints of interest in mild-to-moderate AD. The out-
of-sample prediction had good coverage of the central 
tendency but under-predicted the variability in the 
external sample: a possible explanation for this could 
be that the ADNI data were not generated under a trial 
setting and instead reflect natural disease progression. 
Additionally, the data were subject to a different set of 
entry criteria and trial logistics that plausibly were not 
captured by the limited set of covariates included in 
modeling. The benefits of modeling the multivariate 
progression (as opposed to using univariate models) are 
many, and include assessment of information content 
from endpoints on the progression of a population 
of interest, a cohesive methodology to synthesize the 
information from multiple endpoints with varying 
missingness patterns (missing data do not bias our 
inferences here, under the assumption of a “Missing at 
Random” missing data mechanism (24)) into a single 
measure of disease status, and the ability to then simulate 
multivariate patient data that preserve the correlation in 
the endpoints across endpoints and time. The summary of 
progression as a longitudinal univariate score allows for 
simple assessment of disease progression across multiple 
endpoints. For example, using CTSs we found that the 
detection of a 20% reduction in disease progression in a 
balanced study of patients with mild-to-moderate AD (at 
158 patients per arm) was unlikely based upon ADAS-
Cog and the CDR-SB.

Interventions modeled as acting directly upon the 
latent scale should be considered with care, as this 
induces an averaging of the effect across the modeled 
endpoints. When including endpoints with varying 
degrees of sensitivity to the intervention, fitted values 
of the more sensitive endpoints (to the intervention) 
will tend to show under-prediction of the effect, while 
the less-sensitive measures will show a bias towards 
over-prediction. Reducing these biases in the effects of 
the intervention may be preferable in situations such 
as CTSs and can be addressed by modeling the effect 
separately per endpoint (i.e., within the submodels), 
with subsequent assessment of differing levels of disease 
modification by endpoint.

When jointly modeling all of the endpoints relevant 
to this patient population in the joint progression model, 
many of the information curves correspond to our current 
understanding of where these scales fit within the disease 
spectrum. While the CDR-SB is typically thought to 
be most informative for the prodromal population, it 
appears here to provide information on a similar disease 
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stage to that of ADAS-Cog and MMSE. Extrapolating the 
observed information plots to earlier disease states, one 
would expect RAVLT, FAQ, and MoCA to be increasingly 
useful to detect progression in patients at early stages 
with ADAS-Cog 12, CDR-SB, and MMSE being more 
discriminatory at later stages.

As clinical trials are conducted in patient populations 
with increasingly milder forms of AD, the required 
duration of a trial to observe changes in rates of 
progression per treatment will increase. In longer trials, 
a metric that began a study as being most informative 
may not remain the best marker of progression by the 
trial’s end. In these increasingly common situations, 
models that synthesize information onto a univariate 
scale could offer a way to detect and track the continual 
changes in progression. Coupled with dose/exposure–
response modeling, the assessment of how early or 
late a drug becomes efficacious may help to optimize 
treatment across the different stages of the disease. In 
these longer trial settings, and despite not being evident 
in this work, it is also possible that the assumption 
of linear progression of the latent variable in time is 
overly simplistic and that such progression may be 
more apparent over longer time intervals and longer 
predictions. An adaptation of the model to utilize a latent 
variable process and allow for time non-linearity (25) 
would be a good direction of future work; however, the 
challenge of identifiability between non-linearity of the 
scales and non-linearity in the latent variable seems a 
likely problem.

Modeling herein was performed in a Bayesian context 
to leverage the flexibility of sampling-based estimation. 
Doing so requires specification of priors; prior selection 
here was made in the context of internal decision-making, 
with simulation-based diagnostics used to ascertain 
adequacy of the model for simulation purposes, which 
was the primary goal of this analysis. More extensive 
sensitivity analyses regarding the priors, including use 
of prior-predictive simulations, would be necessary in 
order to ensure fitness for purpose with a broader set of 
stakeholders.

We have demonstrated that this modeling method 
gives a model that is able to replicate the observed 
multivariate trajectories. A possible beneficial use of 
such a multivariate model would be in the framework 
of multivariate decision or testing processes, such as 
investigating the success rate for a planned gatekeeping 
procedure based upon multiple endpoints. Extending 
the longitudinal latent variable approach to allow for 
simulation of doses, patient populations, and trial 
parameters outside of those studied while preserving 
this correlation leads to more accurate assessment of the 
performance of such testing procedures. 
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